Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Heliyon ; 10(7): e28621, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586359

RESUMO

Natural deep eutectic solvents (NADESs) have been considered promising to replace traditional volatile and toxic organic solvents for the extraction of biologically active substances from natural sources. This work applied an efficient and ethanol-exclusion strategy for extraction of phenolic compounds from poplar type propolis using five known NADESs (lactic acid:1,2-propanediol 1:1, lactic acid:fructose 5:1, choline chloride:1,2-propanediol 1:3, choline chloride:1,2-propanediol:water 1:1:1 and betaine:malic acid:water 1:1:6). The selected NADESs' extractability was evaluated by measuring the concentrations of total phenolics and total flavones and flavonols in the propolis extracts obtained, which qualitative chemical composition was further determined in detail by gas chromatography-mass spectrometry (GC-MS) analysis. It demonstrated that the chemical profiles of NADES and 70% ethanolic propolis extracts are similar. To expand the knowledge about the role of the applied solvents in the poplar propolis extraction process, the in vitro antimicrobial, cytotoxic and genotoxic activity of both NADESs and liquid NADES extracts were evaluated. The results revealed that the use of the selected NADESs as an extraction media for phenolic compounds from poplar propolis not only delivered a good extraction yield in some cases, but generally led to the preservation of propolis extracts' biological activity and even to the enhancement of their antimicrobial effect in comparison with the hydroethanolic one. Besides, the tested NADESs except for lactic acid:fructose and betaine:malic acid:water exerted low to negligible toxicity against normal cells treated and apart from lactic acid:fructose the remaining solvents demonstrated concentration-dependent moderate to subtle genotoxicity. There is a probability that not the supramolecular structure of the NADESs, but their components, played a key role for the observed biological effects. The present study has demonstrated an alternative approach for extracting the biologically active complex from poplar type propolis using NADESs, which could be useful for further pharmaceutical and cosmeceutical applications.

2.
J Biosci ; 492024.
Artigo em Inglês | MEDLINE | ID: mdl-38173312

RESUMO

Xanthomonas euvesicatoria is a major cause of bacterial spot disease in various crops. The present study was focused on the pathosystem pepper (Capsicum annuum L.) - X. euvesicatoria 269p (wild strain). The infectious process was studied using several different modes of in vivo inoculation under controlled conditions. The spread of the pathogen in different parts of the plants was monitored by a new qPCR procedure developed for the detection of X. euvesicatoria, as well as by re-isolation of viable bacterial cells. Photosynthesis, the number of viable pathogens, oxidative stress markers, activities of the main antioxidant enzymes, and levels of nonenzymatic antioxidants in the novel single-leaf model system were studied. The most important observation is that the invasion of the pathogen causes local infection and the dissemination of bacteria to the healthy parts of the host is blocked. The plants limit bacterial colonization around the entry points. Oxidative burst and alterations in antioxidant defenses are detected in infectious leaf lesions. Localized ROS overproduction resembles a hypersensitive response, but several differences can be observed. We assumed that pepper plants are more likely to manifest an intermediate phenotype, similar to lesions simulating disease or leaf flecking. By localizing the infection, possibly involving oxidative stress, the plant survives. However, the same applies to bacteria. The pathogen multiplies at the infection spots and is transmitted to other plants. Our conclusion is that the intermediate phenotype in the studied pathosystem is an example of long and successful co-evolution for both species.


Assuntos
Capsicum , Xanthomonas , Antioxidantes , Estresse Oxidativo , Alimentos , Folhas de Planta/genética , Xanthomonas/genética , Capsicum/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
Plants (Basel) ; 12(23)2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38068562

RESUMO

Sideritis scardica Griseb. is a critically endangered Balkan endemic species, known for its antioxidant, neuroprotective and anti-inflammatory properties. The aim of the present study was to detail an efficient protocol for the micropropagation of S. scardica. In vitro cultures were initiated from the shoot tips of 40 days-old in vivo seedlings and the effects of different plant growth regulator treatments were examined. A Murashige and Skoog nutrient medium (MS) containing 1 mg/L zeatin and 0.1 mg/L indole-3-acetic acid (IAA) proved to be the most efficient for shoot multiplication as it produced quality, vigorous shoots with a mean number of six shoots per explant. For the first time, the antioxidant and antitumor activities of extracts from in vitro-obtained plants were evaluated. In vitro cultivated plants grown in the field revealed a higher total polyphenol content (3929.1 ± 112.2 mg GAE/100 g vs. 3563.5 ± 52.8 mg GAE/100 g) and higher ORAC antioxidant activity (1211.6 ± 27.3 µmol TE/g vs. 939.9 ± 52.4 µmol TE/g) than in situ cultivated plants. A comparison of the antitumor activities of extracts from in vitro propagated shoots, field-grown in vitro-obtained plants and in situ plants on HeLa (cervical adenocarcinoma), HT-29 (colorectal adenocarcinoma) and MCF-7 (breast cancer) human cancer cell lines showed that in vitro propagated shoots had a significant concentration-dependent cytotoxic effect on the cervical adenocarcinoma cell line HeLa, while the field-grown in vitro-obtained and in situ-collected samples induced the highest reduction in the viability of the mammary carcinoma cell line MCF-7. In both cases, the cells of the control non-tumor cell line, BALB/3T3, were significantly less affected. The results showed that the in vitro multiplication protocol ensured the obtainment of numerous plants with antioxidant and antitumor potential.

4.
Plants (Basel) ; 12(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37836088

RESUMO

The present study was focused on the pathosystem pepper plants (Capsicum annuum L.)-phytopathogenic bacterium X. euvesicatoria (wild strain 269p)-bacteriophage BsXeu269p/3 and the possibility of bacteriophage-mediated biocontrol of the disease. Two new model systems were designed for the monitoring of the effect of the phage treatment on the infectious process in vivo. The spread of the bacteriophage and the pathogen was monitored by qPCR. A new pair of primers for phage detection via qPCR was designed, as well as probes for TaqMan qPCR. The epiphytic bacterial population and the potential bacteriolytic effect of BsXeu269p/3 in vivo was observed by SEM. An aerosol-mediated transmission model system demonstrated that treatment with BsXeu269p/3 reduced the amount of X. euvesicatoria on the leaf surface five-fold. The needle-pricking model system showed a significant reduction of the amount of the pathogen in infectious lesions treated with BsXeu269p/3 (av. 59.7%), compared to the untreated control. We found that the phage titer is 10-fold higher in the infection lesions but it was still discoverable even in the absence of the specific host in the leaves. This is the first report of in vivo assessment of the biocontrol potential of locally isolated phages against BS pathogen X. euvesicatoria in Bulgaria.

5.
Microorganisms ; 11(8)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37630469

RESUMO

Escherichia coli (E. coli) is a ubiquitous microorganism with pathogenic and saprophytic clones. The objective of this study was to evaluate the presence, virulence, antibiotic resistance and biofilm formation of E. coli in three industrial farms in Bulgaria, as well as their adjacent sites related to the utilization of manure (feces, wastewater in a separator, lagoons, means of transport, and soils). The isolation of single bacterial cultures was performed via standard procedures with modifications, and E. coli isolates were identified via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and polymerase chain reaction (PCR). The disk diffusion method was used to assess antimicrobial resistance, and PCR was used to detect genes for antibiotic resistance (GAR) (qnr, aac(3), ampC, blaSHV/blaTEM and erm) and virulence genes (stx, stx2all, LT, STa, F4 and eae). The protocol of Stepanovic was utilized to measure the biofilm formation of the isolates. A total of 84 isolates from different samples (n = 53) were identified as E. coli. Almost all demonstrated antimicrobial resistance, and most of them demonstrated resistance to multiple antibiotics from different classes. No virulence genes coding the Shiga toxin or enterotoxins or those associated with enteropathogenicity were detected. No GAR from those tested for quinolones, aminoglycosides and macrolides were found. However, all isolates that were resistant to a penicillin-class antibiotic (56) had ß-lactamase-producing plasmid genes. All of them had ampC, and 34 of them had blaTEM. A total of 14 isolates formed strongly adherent biofilms. These results in a country where the use of antibiotics for growth promotion and prophylaxis in farms is highly restricted corroborate that the global implemented policy on antibiotics in human medicine and in animal husbandry needs revision.

6.
Plants (Basel) ; 12(8)2023 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37111815

RESUMO

Clinopodium vulgare L. is a valuable medicinal plant used for its anti-inflammatory, antibacterial and wound-healing properties. The present study describes an efficient protocol for the micropropagation of C. vulgare and compares, for the first time, the chemical content and composition and antitumor and antioxidant activities of extracts from in vitro cultivated and wild-growing plants. The best nutrient medium was found to be Murashige and Skoog (MS) supplemented with 1 mg/L BAP and 0.1 IBA mg/L, yielding on average 6.9 shoots per nodal segment. Flower aqueous extracts from in vitro plants had higher total polyphenol content (29,927.6 ± 592.1 mg/100 g vs. 27,292.8 ± 85.3 mg/100 g) and ORAC antioxidant activity (7281.3 ± 82.9 µmol TE/g vs. 7246.3 ± 62.4 µmol TE/g) compared to the flowers of wild plants. HPLC detected qualitative and quantitative differences in phenolic constituents between the in vitro cultivated and wild-growing plants' extracts. Rosmarinic acid was the major phenolic constituent, being accumulated mainly in leaves, while neochlorogenic acid was a major compound in the flowers of cultivated plants. Catechin was found only in cultivated plants, but not in wild plants or cultivated plants' stems. Aqueous extracts of both cultivated and wild plants showed significant in vitro antitumor activity against human HeLa (cervical adenocarcinoma), HT-29 (colorectal adenocarcinoma) and MCF-7 (breast cancer) cell lines. The best cytotoxic activity against most of the cancer cell lines, combined with the least detrimental effects on a non-tumor human keratinocyte cell line (HaCaT), was shown by the leaf (250 µg/mL) and flower (500 µg/mL) extracts of cultivated plants, making cultivated plants a valuable source of bioactive compounds and a suitable candidate for anticancer therapy.

7.
Antibiotics (Basel) ; 12(4)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37107078

RESUMO

Yersiniosis is the third most commonly reported foodborne zoonosis in the European Union. Here, we evaluated the prevalence of pathogenic Yersinia enterocolitica among healthy pigs (as a major reservoir) in a slaughterhouse in Bulgaria. A total of 790 tonsils and feces from 601 pigs were examined. Isolation and pathogenicity characterization was carried out by the ISO 10273:2003 protocol and Polymerase Chain Reaction (PCR), detecting the 16S rRNA gene, attachment and invasion locus (ail), Yersinia heat-stable enterotoxin (ystA), and Yersinia adhesion (yadA) genes. Genetic diversity was assessed by pulsed-field gel electrophoresis (PFGE), and antimicrobial resistance by the standard disk diffusion method. Of all the pigs tested, 6.7% were positive for Y. enterocolitica. All isolates belonged to Y. enterocolitica bioserotype 4/O:3. ail, and ystA genes were detected in all positive strains (n = 43), while the plasmid Yersinia virulence plasmid (pYV) was detected in 41. High homogeneity was observed among the strains, with all strains susceptible to ceftriaxone, amikacin and ciprofloxacin, and resistant to ampicillin. In conclusion, a low prevalence of Y. enterocolitica 4/O:3 was found in healthy pigs slaughtered in Bulgaria, not underestimating possible contamination of pork as a potential risk to consumer health.

8.
Pharmaceutics ; 14(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36559182

RESUMO

Cutaneous T-cell lymphoma (CTCL) is a rare form of cancer with local as well as systemic manifestations. Concomitant bacterial infections increase morbidity and mortality rates due to impaired skin barrier and immune deficiency. In the current study, we demonstrated that the in vitro anti-lymphoma potential of erufosine is diminished by TWIST1 expression and micellar curcumin substantially increases its antineoplastic activity. Pharmacokinetic analysis showed that the micellar curcumin (MCRM) used in our study was characterized by low zeta potential, slow release of curcumin, and fast cell membrane penetration. The combination ratio 1:4 [erufosine:MCRM] achieved strong synergism by inhibiting cell proliferation and clonogenicity. The combined antiproliferative effects were calculated using the symbolic mathematical software MAPLE 15. The synergistic combination strongly decreased the expression of TWIST1 and protein kinase B/Akt as proven by western blotting. Significant reductions in NF-κB activation, induction of apoptosis, and altered glutathione levels were demonstrated by corresponding assays. In addition, the synergistic combination enhanced the anti-staphylococcal activity and prevented biofilm formation, as shown by crystal violet staining. Taken together, the above results show that the development of nanotechnological treatment modalities for CTCL, based on rational drug combinations exhibiting parallel antineoplastic and antibacterial effects, may prove efficacious.

9.
Plants (Basel) ; 11(8)2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35448801

RESUMO

The wastewater after rose oil distillation is usually discharged into the drainage systems and it represents a serious environmental problem. While being rich in polyphenols, which have beneficial biological activity and application in the pharmaceutical industry, limited research has been carried out about the biological activity of the specific wastewaters per se. Wastewaters after distillation of the four Bulgarian oil-bearing roses Rosa damascena Mill., R. alba L., R. centifolia L., and R. gallica L. exerted significant antioxidant activity and good antiherpes simplex virus type-1 (HSV-1) activity while maintaining a good toxicological safety profile (low cytotoxic effect) towards normal cell lines. More precisely, the non-tumorigenic cells were a human (HEK-293 embryonic kidney cells) and a mouse cell line (CCL-1 fibroblasts, which are recommended as a standard for cytotoxicity evaluation in Annex C of ISO 10993-5). The concentrations that achieved antioxidant and radical scavenging effects (0.04-0.92% v/v) were much lower than most of the maximum tolerated concentrations for the tissue culture cells (0.2-3.4% v/v). The wastewaters had a weak antiproliferative effect against Staphylococcus aureus. None of the wastewaters had activity against Gram-negative bacteria or a bactericidal or antifungal effect. We can conclude that these four species, which are the most preferred species worldwide for producing high-quality rose oil, have the potential to be developed as promising antioxidant and antiherpesvirus nutraceuticals.

10.
Molecules ; 27(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35268611

RESUMO

Anaerobic digestion (AD) is a microbially-driven process enabling energy production. Microorganisms are the core of anaerobic digesters and play an important role in the succession of hydrolysis, acidogenesis, acetogenesis, and methanogenesis processes. The diversity of participating microbial communities can provide new information on digester performance for biomass valorization and biofuel production. In this study anaerobic systems were used, operating under mesophilic conditions that realized biodegradation processes of waste wheat straw pretreated with NaOH-a renewable source for hydrogen and methane production. These processes could be managed and optimized for hydrogen and methane separately but combining them in a two-stage system can lead to higher yields and a positive energy balance. The aim of the study was to depict a process of biohydrogen production from lignocellulosic waste followed by a second one leading to the production of biomethane. Archaeal and bacterial consortia in a two-stage system operating with wheat straw were identified for the first time and the role of the most important representatives was elucidated. The mixed cultures were identified by the molecular-biological methods of metagenomics. The results showed that biohydrogen generation is most probably due to the presence of Proteiniphilum saccharofermentans, which was 28.2% to 45.4% of the microbial community in the first and the second bioreactor, respectively. Archaeal representatives belonging to Methanobacterium formicicum (0.71% of the community), Methanosarcina spelaei (0.03%), Methanothrix soehngenii (0.012%), and Methanobacterium beijingense (0.01%) were proven in the methane-generating reactor. The correlation between substrate degradation and biogas accumulation was calculated, together with the profile of fatty acids as intermediates produced during the processes. The hydrogen concentration in the biogas reached 14.43%, and the Methane concentration was 69%. Calculations of the energy yield during the two-stage process showed 1195.89 kWh·t-1 compared to a 361.62 kWh·t-1 cumulative yield of energy carrier for a one-stage process.


Assuntos
Archaea
11.
Biomedicines ; 10(2)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35203593

RESUMO

The antimicrobial multidrug resistance (AMR) of pathogenic bacteria towards currently used antibiotics has a remarkable impact on the quality and prolongation of human lives. An effective strategy to fight AMR is the method PhotoDynamic Therapy (PDT). PDT is based on a joint action of a photosensitizer, oxygen, and light within a specific spectrum. This results in the generation of singlet oxygen and other reactive oxygen species that can inactivate the pathogenic cells without further regrowth. This study presents the efficacy of a new Pd(II)- versus Zn(II)-phthalocyanine complexes with peripheral positions of methylpyridiloxy substitution groups (pPdPc and ZnPcMe) towards Gram-negative bacteria Aeromonas hydrophila (A.hydrophila). Zn(II)-phthalocyanine, ZnPcMe was used as a reference compound for in vitro studies, bacause it is well-known with a high photodynamic inactivation ability for different pathogenic microorganisms. The studied new isolates of A.hydrophila were antibiotic-resistant (R) and sensitive (S) strains. The photoinactivation results showed a full effect with 8 µM pPdPc for S strain and with 5 µM ZnPcMe for both R and S strains. Comparison between both new isolates of A.hydrophila (S and R) suggests that the uptakes and more likely photoinactivation efficacy of the applied phthalocyanines are independent of the drug sensitivity of the studied strains.

12.
Molecules ; 26(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834109

RESUMO

Oregano oil (OrO) possesses well-pronounced antimicrobial properties but its application is limited due to low water solubility and possible instability. The aim of this study was to evaluate the possibility to incorporate OrO in an aqueous dispersion of chitosan-alginate nanoparticles and how this will affect its antimicrobial activity. The encapsulation of OrO was performed by emulsification and consequent electrostatic gelation of both polysaccharides. OrO-loaded nanoparticles (OrO-NP) have small size (320 nm) and negative charge (-25 mV). The data from FTIR spectroscopy and XRD analyses reveal successful encapsulation of the oil into the nanoparticles. The results of thermogravimetry suggest improved thermal stability of the encapsulated oil. The minimal inhibitory concentrations of OrO-NP determined on a panel of Gram-positive and Gram-negative pathogens (ISO 20776-1:2006) are 4-32-fold lower than those of OrO. OrO-NP inhibit the respiratory activity of the bacteria (MTT assay) to a lower extent than OrO; however, the minimal bactericidal concentrations still remain significantly lower. OrO-NP exhibit significantly lower in vitro cytotoxicity than pure OrO on the HaCaT cell line as determined by ISO 10993-5:2009. The irritation test (ISO 10993-10) shows no signs of irritation or edema on the application site. In conclusion, the nanodelivery system of oregano oil possesses strong antimicrobial activity and is promising for development of food additives.


Assuntos
Alginatos , Antibacterianos , Quitosana , Bactérias Gram-Negativas/crescimento & desenvolvimento , Bactérias Gram-Positivas/crescimento & desenvolvimento , Nanopartículas/química , Óleos Voláteis , Origanum/química , Alginatos/química , Alginatos/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/química , Quitosana/farmacologia , Óleos Voláteis/química , Óleos Voláteis/farmacologia
13.
Antibiotics (Basel) ; 10(8)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34438990

RESUMO

Antimicrobial resistance (AMR) is a worldwide health problem affecting humans, animals, and the environment within the framework of the "One Health" concept. The aim of our study was to evaluate the prevalence of pathogenic strains of the species Escherichia coli (E. coli), their AMR profile, and biofilm-forming potential. The isolated strains from three swine faeces and free lagoons (ISO 16654:2001/Amd 1:2017) were confirmed using Phoenix M50 and 16S rDNA PCR. The antibiotic sensitivity to 34 clinically applied antibiotics was determined by Phoenix M50 and the disc diffusion method, according to the protocols of the CLSI and EUCAST. We confirmed the presence of 16 E. coli isolates, of which 87.5% were multi-drug-resistant and 31.25% performed strong biofilms. The possibility for the carrying and transmission of antibiotic-resistance genes to quinolones (qnr), aminoglycosides (aac(3)), ß-lactamase-producing plasmid genes ampC, and blaSHV/blaTEM was investigated. We confirmed the carrying of blaSHV/blaTEM in one and ampC in seven isolates. The strains were negative for the virulence genes (ETEC (LT, STa, and F4), EPEC (eae), and STEC/VTEC (stx and stx2all)). The results should contribute to the development of effective measures for limitation and control on the use of antibiotics, which is a key point in the WHO action plan.

14.
Toxics ; 9(5)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919268

RESUMO

The cytotoxicity and microbicidal capacity of seven organic solvents commonly applied for studying plant extracts and bioactive compounds were systematically investigated based on international standards. Four cell lines of normal (CCL-1, HaCaT) or tumor (A-375, A-431) tissue origin, seven bacterial and one fungal strain were used. The impact of the least toxic solvents in the determination of in vitro cytotoxicity was evaluated using a standardized extract from Vaccinium macrocarpon containing 54.2% v/v proanthocyanidins (CystiCran®). The solvents ethanol, methoxyethanol and polyethylene glycol were the least cytotoxic to all cell lines, with a maximum tolerated concentration (MTC) between 1 and 2% v/v. Ethanol, methanol and polyethylene glycol were mostly suitable for antimicrobial susceptibility testing, with minimum inhibitory concentrations (MICs) ≥ 25% v/v. The MTC values of the solvents dimethyl sulfoxide, dimethoxyethane and dimethylformamide varied from 0.03% to 1.09% v/v. The MICs of dimethyl sulfoxide, methoxyethanol and dimethoxyethane were in the range of 3.125-25% v/v. The cytotoxic effects of CystiCran® on eukaryotic cell lines were directly proportional to the superimposed effect of the solvents used. The results of this study can be useful for selecting the appropriate solvents for in vitro estimation of the cytotoxic and growth inhibitory effects of bioactive molecules in eukaryotic and prokaryotic cells.

15.
Int J Biometeorol ; 65(6): 865-872, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33416949

RESUMO

Although a number of epidemiological studies have examined the effects of non-optimal temperatures on mortality in Europe, evidence about the mortality risks associated with exposures to hot and cold temperatures in Bulgaria is scarce. This study provides evidence about mortality attributable to non-optimal temperatures in adults aged 65 and over in Sofia, Bulgaria, between 2000 and 2017. We quantified the relationship between the daily mean temperature and mortality in the total elderly adult population aged 65 and over, among males and females aged 65 and over, as well as individuals aged 65-84 and 85 years or older. We used a distributed lag non-linear model with a 25-day lag to fully capture the effects of both cold and hot temperatures and calculated the fractions of mortality attributable to mild and extreme hot and cold temperatures. Cold temperatures had a greater impact on mortality than hot temperatures during the studied period. Most of the temperature-attributable mortality was due to moderate cold, followed by moderate heat, extreme cold, and extreme heat. The total mortality attributable to non-optimal temperatures was greater among females compared to males and among individuals aged 85 and over compared to those aged 65 to 84. The findings of this study can serve as a foundation for future research and policy development aimed at characterizing and reducing the risks from temperature exposures among vulnerable populations in the country, climate adaptation planning and improved public health preparedness, and response to non-optimal temperatures.


Assuntos
Temperatura Baixa , Temperatura Alta , Adulto , Idoso , Idoso de 80 Anos ou mais , Bulgária/epidemiologia , Europa (Continente) , Feminino , Humanos , Masculino , Mortalidade , Temperatura
16.
Biomolecules ; 11(1)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478154

RESUMO

Plants from the Rosacea family are rich in natural molecules with beneficial biological properties, and they are widely appreciated and used in the food industry, perfumery, and cosmetics. In this review, we are considering Rosa damascena Mill., Rosa alba L., Rosa centifolia L., and Rosa gallica L. as raw materials important for producing commercial products, analyzing and comparing the main biological activities of their essential oils, hydrolates, and extracts. A literature search was performed to find materials describing (i) botanical characteristics; (ii) the phytochemical profile; and (iii) biological properties of the essential oil sand extracts of these so called "old roses" that are cultivated in Bulgaria, Turkey, India, and the Middle East. The information used is from databases PubMed, Science Direct, and Google Scholar. Roses have beneficial healing properties due to their richness of beneficial components, the secondary metabolites as flavonoids (e.g., flavones, flavonols, anthocyanins), fragrant components (essential oils, e.g., monoterpenes, sesquiterpenes), and hydrolysable and condensed tannins. Rose essential oils and extracts with their therapeutic properties-as respiratory antiseptics, anti-inflammatories, mucolytics, expectorants, decongestants, and antioxidants-are able to act as symptomatic prophylactics and drugs, and in this way alleviate dramatic sufferings during severe diseases.


Assuntos
Perfumes , Fitoterapia , Rosa/química , Animais , Antineoplásicos/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Óleos de Plantas/química , Rosa/anatomia & histologia , Rosa/crescimento & desenvolvimento
17.
Molecules ; 27(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35011479

RESUMO

This study evaluated the in vitro antineoplastic and antiviral potential and in vivo toxicity of twelve extracts with different polarity obtained from the herbaceous perennial plant Geum urbanum L. (Rosaceae). In vitro cytotoxicity was determined by ISO 10993-5/2009 on bladder cancer, (T-24 and BC-3C), liver carcinoma (HEP-G2) and normal embryonic kidney (HEK-293) cell lines. The antineoplastic activity was elucidated through assays of cell clonogenicity, apoptosis induction, nuclear factor kappa B p65 (NFκB p65) activation and total glutathione levels. Neutral red uptake study was applied for antiviral activity. The most promising G. urbanum extract was analyzed by UHPLC-HRMS. The acute in vivo toxicity analysis was carried out following OEDC 423. The ethyl acetate extract of aerial parts (EtOAc-AP) exhibited the strongest antineoplastic activity on bladder cancer cell lines (IC50 = 21.33-25.28 µg/mL) by inducing apoptosis and inhibiting NFκB p65 and cell clonogenicity. EtOAc and n-butanol extracts showed moderate antiviral activity against human adenovirus type 5 and human simplex virus type I. Seventy four secondary metabolites (gallic and ellagic acid derivatives, phenolic acids, flavonoids, etc.) were identified in EtOAc-AP by UHPLC-HRMS. This extract induced no signs of acute toxicity in liver and kidney specimens of H-albino mice in doses up to 210 mg/kg. In conclusion, our study contributes substantially to the detailed pharmacological characterization of G. urbanum, thus helping the development of health-promoting phytopreparations.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Antivirais/farmacologia , Geum/química , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/química , Antivirais/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Especificidade de Órgãos/efeitos dos fármacos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Espectrometria de Massas em Tandem
18.
BMC Chem ; 14(1): 73, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33308280

RESUMO

Natural deep eutectic solvents (NADES) are a new alternative to toxic organic solvents. Their constituents are primary metabolites, non-toxic, biocompatible and sustainable. In this study four selected NADES were applied for the extraction of two medicinal plants: Sideritis scardica, and Plantago major as an alternative to water-alcohol mixtures, and the antimicrobial and genotoxic potential of the extracts were studied. The extraction efficiency was evaluated by measuring the extracted total phenolics, and total flavonoids. Best extraction results for total phenolics for the studied plants were obtained with choline chloride-glucose 5:2 plus 30% water; but surprisingly these extracts were inactive against all tested microorganisms. Extracts with citric acid-1,2-propanediol 1:4 and choline chloride-glycerol 1:2 showed good activity against S. pyogenes, E. coli, S. aureus, and C. albicans. Low genotoxicity and cytotoxicity were observed for all four NADES and the extracts with antimicrobial activity. Our results confirm the potential of NADESs for extraction of bioactive constituents of medicinal plants and further suggest that NADES can improve the effects of bioactive extracts. Further studies are needed to clarify the influence of the studied NADES on the bioactivity of dissolved substances, and the possibility to use such extracts in the pharmaceutical and food industry.

19.
PLoS One ; 14(4): e0216074, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31017965

RESUMO

Propolis produced by the stingless bee Lisotrigona cacciae was studied for the first time. Using different chromatographic procedures, a total of eighteen constituents (phenols and triterpenes) were isolated, among which flavane 1, homoisoflavanes 2-4, and xanthones 5 and 6 were new for propolis. Propolis extract was also characterized by gas chromatography/mass spectrometry and other fifteen constituents were identified. The xanthone α-mangostin (8) demonstrated significant activity against Staphylococcus aureus with MIC and MBC 0.31 µg/ml, followed by 7,4'-dihydroxy-5-methoxy-8-methylflavane (1) with MIC 78 µg/ml and MBC 156 µg/ml. 10,11- Dihydroxydracaenone C (4), a component bearing ortho-hydroxyl groups, was the only compound displaying radical scavenging ability. Triple botanical origin of the sample was defined, consisting of Dracaena cochinchinensis, Cratoxylum cochinchinense and Mangifera indica. D. cochinchinensis is a new resin source of propolis.


Assuntos
Abelhas/química , Compostos Fitoquímicos/análise , Própole/análise , Animais , Antibacterianos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Testes de Sensibilidade Microbiana , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Vietnã
20.
Chem Cent J ; 11(1): 113, 2017 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-29116480

RESUMO

Many Geum species are known to be rich in biologically active compounds and therefore could be a source of new natural products with pharmacological potential. The medicinal plant Geum urbanum L. is widespread in Bulgaria and has been used in folk medicine. In the present study, the methanol extracts of the roots and aerial parts of G. urbanum and their fractions (petroleum ether, ethyl acetate and n-butanol) were investigated for antibacterial and radical scavenging activity. The ethyl acetate and n-butanol fractions inhibited the growth of Gram-positive pathogenic and opportunistic bacteria from the genus Staphylococcus (MIC EtOAc: 0.078 mg/ml aerial and 0.156 mg/ml roots; MIC n-BuOH: 0.156 mg/ml aerial and 1.25 mg/ml roots) and the species Bacillus cereus stronger than the other extracts and fractions tested (MIC EtOAc: 0.078 mg/ml aerial and 0.156 mg/ml roots; MIC n-BuOH: 0.156 mg/ml aerial and 0.078 mg/ml roots), and showed corresponding radical scavenging activity (EtOAc: EC50 1.5 µg/ml aerial, 0.8 µg/ml roots; n-BuOH: 4.5 µg/ml aerial; 3.7 µg/ml roots). Additionally, their total phenolic content was quantified (% of dry EtOAc fractions of roots 61%, of arial parts 32%; of dry n-BuOH fractions of roots 16%, of arial parts 13%). Seven compounds were isolated and identified spectroscopically from the ethyl acetate extract. Two acetylated ellagic acid rhamnosides were found for the first time in the genus Geum and three others, tormentic acid, niga-ichigoside F1, and 3,3'-di-O-methylellagic acid-4-O-ß-D-glucopyranoside, were newly detected for the species G. urbanum. Our results reveal that G. urbanum L. is a perspective medicinal plant and deserves further, more detailed studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA